AB-2970 CLETA-S Quick Manual

Composition (Storage)

CL reagent	1mg1 bottle	(-20℃)
Substrate solution	20mL1 bottle	(4℃)
Enzyme solution	8mL1 bottle	(4°C)
Dilution buffer	8mL2 bottles	(4℃)

Component

	Main Component
CL reagent	MPEC(powder **1)
Substrate solution	Xanthine
Enzyme solution	Xanthine Oxidase(1.25unit /mL)
Dilution buffer	HEPES

^{**1:} Please make a stock solution by dissolving the 1mg of MPEC powder with 1.78ml ethanol and divide it into small bottle which for each experience, and store it at -80dgreeC.

For working solution, dilute 50 µL of stock solution with 150 µL of distilled water.

Summary of Antioxidant Activity Measurment

superoxide is generated from xanthine-xanthine oxidase reaction.

The emission of light is provided by adding a chemiluminescence reagent in generated superoxide.

Function of antioxidant activity is evaluated adding an antioxidant enzyme or an antioxidant material in this reaction.

۴	CL reagent + Dilution buffer + Substrate solution
	· · · · · · · · · · Negative Control
k	CL reagent + Enzyme solution + Substrate solution
	· · · · · · · · · Positive Control
k	CL reagent + Dilution buffer + Substrate solution + Target sample
	$\cdots \cdots \cdots$ Sample (N)
k	CL reagent + Enzyme solution + Substrate solution + Target sample
	$\cdots \cdots \cdots$ Sample (P)

the antioxidant activity is calculated in below formula.

Antioxidant activity = 1 - [(sample(P) - sample(N)) / (Positive control - Negative Control)]

Operating Method

Recommended volumes for 1 measurement

(1) Sample (or Blank solution) $10 \mu L$ (2) CL reagent $10 \mu L$ (3) Enzyme solution (or Dilution buffer) $80 \mu L$ (4) Substrate solution $200 \mu L$

{Measurement}

- ① Prepare mixing solution with CL reagent & Dilution buffer.
 - Mix 10 μL of CL reagent and 80 μL of dilution buffer per 1 time of measurement.
 - The solution should be prepared with over turn mixing in appropriate volume for 1 measurement before using.
 - (ex: prepare mixing solution with measured sample amount \times four times and additional two times at a time.)
- 2 Prepare mixing solution with CL reagent & Enzyme solution.
 - Mix 10 μ L of CL reagent and 80 μ L of enzyme solution per 1 time of measurement. The solution should be prepared with over turn mixing in appropriate volume for 1
 - The solution should be prepared with over turn mixing in appropriate volume for 1 measurement before using.
 - (ex: prepare mixing solution with measured sample amount \times four times and additional two times at a time.)
- 4 Inject 90 \upmu L of prepared 1 mixing solution into 3the measuring container. Set the measuring container to the device, and inject 200 \upmu L of substrate solution. After measuring of luminescence for 10 sec., the value is considered as [Negative control].
- ⑤ Inject $10 \,\mu\text{L}$ of ③ the blank solution into a new measuring container, and inject $90 \,\mu\text{L}$ of ② mixing solution.
 - Measure it same as process ④, the value is considered as [Positive control].
- 6 Inject 10 μ L of a sample into a new measuring container, and inject 90 μ L of 1 mixing solution.
 - Measure it same as process ④, the value is considered as [Sample(N)].
- 7 Inject 10 μ L of 6 the sample into a new measuring container, and inject 90 μ L of 2 mixing solution.
 - Measure it same as process ④, the value is considered as [Sample(N)].
- Calculate antioxidant activity with the above mentioned formula.

Reference

1.Shimomura, O., Wu. C., Murai, A., and Nakamura, H. (1998)

Evaluation of Imidazopyrazinone-Type Chemiluminescent

Superoxide Probes and Their Application to the Measure-

ment of Superoxide Anion Generated by Listeria

Monocytogenes: Anal. Biochem 258, 230-235